AIR-COOLED CHILLERS www.daikin.eu **COOLING ONLY** #### **ABOUT DAIKIN** Daikin has a worldwide reputation based on over 80 years' experience in the successful manufacture of high quality air conditioning equipment for industrial, commercial and residential use Daikin Europe N.V. ## LARGER OPERATION RANGE The EWAP-AJYNN is available in 2 different versions with cooling capacities ranging from 790 to 1729kW. The units are ideal for use in severe weather conditions and over a wide operation range. This major benefit results from the incorporation of an auto adaptive control system with the following functionality: - > Head pressure setback for high ambient operation: on hot days, when cooling is most needed, Daikin chillers will stay on line by modulating the capacity control in function of the high pressure. - > Optional: Head pressure control (OPFS and OPLA): fan control for low ambient down to -18°C | | Application | Sizes | Capacity range | EERavg | Sound level | | | | |-----|---------------------|-------|----------------|--------|-------------|--|--|--| | Std | Standard efficiency | 12 | 790-1650kW | 2.3 | 101-104dBA | | | | | /A | High efficiency | 18 | 854-1729kW | 2.6 | 102-105dBA | | | | Following integrated options are available on request: Hydronic: OPSP - Single water circulation pump > OPTP - Twin water circulation pump OPHP – High single pumpOPHT – High twin pump Heat Recovery: > OPPR – Partial recovery OPTR – Total recovery ## LARGE FLEXIBILITY In many applications there often exists a simultaneous cooling and heating demand requirement alongside one another. To benefit from this Daikin offers the full range of R-407C EWAP800-C18AJYNN(A) chillers with the option of heat recovery. This option further increases the application flexibility and extends possibilities in the hotel and leisure industry as well as the industrial and process sectors. By energetically recovering useful heat from the cooling-cycle that would otherwise be rejected to the outside, extremely high COPs can be realised in heat recovery mode. The heat recovery unit aims to achieve an optimum balance between cooling and heat recovery to maximize the unit efficiency and offer savings in hot water production. #### Sound level Standard units and High efficiency units can be fitted with Option Reduced Noise (OPRN). OPRN includes lower speed condenser fans and flexible discharge pipes to reduce vibration and further minimise structural sound. Both ranges can be fitted with Option Low Noise (OPLN). OPLN includes lower speed condenser fans, suction and discharge muffler and highly absorbent sound proof cabinets around the compressors ## Heat recovery Depending on the heating requirement either partial heat recovery (OPPR) or as a condenser full heat recovery (OPTR) may be selected. #### OPPR - Partial recovery A stainless steel brazed plate heat exchanger is mounted in series between the compressor and air-cooled condenser as a desuperheater. The sensible heat from the hot discharge gas will be recovered, while the latent heat exchange will occur in the air-cooled condenser. The units efficiency is maintained as condensing pressure can be reduced due to air-cooled condenser becoming oversized. Partial heat recovery $\pm\,35\,\%$ of CC + Pl #### OPTR - Total recovery A shell & tube heat exchanger is mounted in parallel with the air-cooled condenser for full heat recovery of both sensible and latent heat. Hot water temperatures up to 55°C can be achieved. The EWAP-AJYNN(A) chillers are fitted with a single screw compressor with stepless capacity control. The capacity control enables the requierements to be closely matched by modulating the sliding valve position according to the chilled water control condition. Capacity control is infinitely variable between 12.5 and 100% on dual circuit units. #### Main advantages: - > Better part load efficiency (ESEER) - > More stable chilled water temperature - > Closer control tolerance #### **HEAT EXCHANGER** #### Condenser - Constructed from specially designed header distribution pipes, combined with internally grooved Hi-X tubing and Epoxy coated fins - > Standard anti-corrosion treated to better withstand the effects of the external environment - Optional: Condenser protection grilles (OPCG) are available throughout the whole range ## Shell & tube evaporator - > Special high efficiency tubes with grooves on the inside - Special header distribution system and design of water system results in high efficiency and reduced heat transfer surface - Compact dimensions and lower weight result in a smaller refrigerant volume - > Fitted standard with evaporator heater tape #### **ELECTRONIC CONTROL** - Advanced pCO² control - Detailed information on and accurate control of all functional parameters by easy menu scrolling - > Chilled water and brine temperatures down to -8°C on standard unit (to be set up by a certified engineer) - > Changeable digital input/output such as remote on/off, dual setpoint and capacity limit - > Lead lag function is standard - Standard equipped with night setback and peak load limitation - Remote DDC (EKRUPCJ) can be installed up to 1.000m from the unit ## Open Network Integration Daikin has released a gateway for connection to BACnet. LonWorks and Modbus networks equipment and building control systems. BACnet. LonWorks and Modbus networks are recognised worldwide as the de facto standard within the building controls industry. BACnet, LonWorks and Modbus data communication protocols make it possible to control access, energy management, fire/life/safety, HVAC and lighting etc. Simultaneous operation of up to 5 chillers is optional through EKCSCII sequencing panel. This function enables a Daikin 9MW chiller plant to be operated via a single controller. # **SPECIFICATIONS** | STANDARD EFFICIENCY U | NIT | | | 800 | 900 | 950 | C10 | C11 | | | | |---------------------------------|---------------------------------|-----------|---------------------|---|--------|----------------|-------------|-----------|--|--|--| | Capacity (Eurovent) | cooling | | kw | 790 | 875 | 944 | 1,026 | 1,092 | | | | | Nominal input (Eurovent) | cooling | | kw | 340 | 373 | 373 405 44 | | | | | | | Capacity Steps | | | % | 340 373 405 442 476 Stepless 12.5-100 | | | | | | | | | EER | | | ' | 2.32 | 2.35 | 2.33 | 2.32 | 2.29 | | | | | ESEER | | | | 2.87 | 2.90 | 2.89 | 2.88 2.84 | | | | | | Dimensions | height x width x depth | | mm | 2,520x6,210x2,230 | 2,520x | 7,110x2,230 | 2,520x8 | 010x2,230 | | | | | Weight | machine weight | | kg | 5,165 | 5,425 | 5,555 | 5,795 | 5,905 | | | | | | operating weight | | kg | 5,430 | 5,710 | 5,840 | 5,840 6,070 | | | | | | Water Heat Exchanger Evaporator | type | | | Shell and tube | | | | | | | | | | minimum water volume in the sys | stem | I | 278 | | 271 | 256 | | | | | | | water flow rate | min | I/min | 882 | 1,090 | 1,096 | 1,371 | 1,373 | | | | | | | nominal | I/min | 2,265 | 2,508 | 2,706 | 2,941 | 3,130 | | | | | | | max | I/min | 2,788 | 3,445 | 3,465 | 4,337 | 4,341 | | | | | | nominal water pressure drop | cooling | kpa | 66 | 53 | 61 | 46 | 52 | | | | | Air heat exchanger | type | | | Grooved tubes and ALU coated louvred fins | | | | | | | | | an | nominal air flow | | m ³ /min | 3,978 | 4,314 | 4,644 | 4,974 | 5,304 | | | | | | speed | | rpm | 860 | | | | | | | | | Compressor | type | | ., | Semi-hermetic single screw compressor | | | | | | | | | | model | quantity | | 2 | | | | | | | | | Sound Power | 1 | cooling | dba | 101 102 103 | | | | | | | | | Operation Range | water side | min ~ max | °c | -8~10 | | | | | | | | | | air side | min ~ max | °cdb | | | -18(OPLA) ~ 42 | | | | | | | Refrigerant circuit | refrigerant type | | | | | R-407C | | | | | | | | refrigerant charge | | kg | 120 | 130 | 140 | 150 | 160 | | | | | | no of circuits | | , | | ** | 2 | | | | | | | | refrigerant control | | | Electronic expansion valve | | | | | | | | | Power Supply | | | | 3~/400V/50Hz | | | | | | | | | Piping connections | evaporator water inlet/outlet | | | Victaulic, diameter 219.1mm | | | | | | | | | | evaporator water drain | | | 1/2" gas | | | | | | | | | HIGH EFFICIENCY UNIT (/A | N) | | | 850 | 850 900 950 C10 | | | | | | | | |---------------------------------|---------------------------------|-----------|---------------------|---|-----------------------------|----------------|-------------------|-------|--|--|--|--| | Capacity (Eurovent) | cooling | | kw | 854 | 954 | 1,028 | 1,124 | 1,196 | | | | | | Nominal input (Eurovent) | cooling | | kw | 319 | 354 | 386 | 424 | 458 | | | | | | Capacity Steps | | | % | Stepless 12.5-100 | | | | | | | | | | EER | | | | 2.68 | 2.69 | 2.66 | 2.65 | 2.61 | | | | | | ESEER | | | | 3.20 | 3.24 | 3. | 21 | 3.17 | | | | | | Dimensions | height x width x depth | | mm | 2,520x8,010x2,230 | 2,520x8,9 | 910x2,230 | 2,520x9,810x2,230 | | | | | | | Weight | machine weight | | kg | 5,900 | 6,170 | 6,290 | 6,525 | 6,645 | | | | | | | operating weight | | kg | 6,185 | 6,440 | 6,560 | 6,780 | 6,900 | | | | | | Water Heat Exchanger Evaporator | type | | | | | Shell and tube | | | | | | | | | minimum water volume in the sy: | item | I | 271 | 2 | 56 | 2 | 70 | | | | | | | water flow rate | min | I/min | 1,084 | 1,351 | 1,374 | 1,169 | 1,176 | | | | | | | | nominal | I/min | 2,448 | 2,735 | 2,947 | 3,222 | 3,429 | | | | | | | | max | I/min | 3,428 | 4,271 | 4,345 | 3,696 | 4,934 | | | | | | | nominal water pressure drop | cooling | kpa | 51 | 41 | 46 | 76 | 85 | | | | | | Air heat exchanger | type | | | Grooved tubes and ALU coated louvred fins | | | | | | | | | | Fan | nominal air flow | | m ³ /min | 5,310 | 5,640 | 5,970 | 6,300 | 6,636 | | | | | | | speed | | rpm | 860 | | | | | | | | | | Compressor | type | | | Semi-hermetic single screw compressor | | | | | | | | | | | model | quantity | | 2 | | | | | | | | | | Sound Power | | cooling | dba | 102 103 | | | | | | | | | | Operation Range | water side | min ~ max | °c | -8~10 | | | | | | | | | | | air side | min ~ max | °cdb | | -18(OPLA)~46 | | | | | | | | | Refrigerant circuit | refrigerant type | | | | | R-407C | | | | | | | | | refrigerant charge | | kg | 160 | 170 | 180 | 190 | 200 | | | | | | | no of circuits | | | | | 2 | | | | | | | | | refrigerant control | | | Electronic expansion valve | | | | | | | | | | Power Supply | | | | 3 ~ /400V/50Hz | | | | | | | | | | Piping connections | evaporator water inlet/outlet | | | | Victaulic, diameter 219.1mm | | | | | | | | | | evaporator water drain | | | 1/2'' gas | | | | | | | | | # **OPTIONS & ACCESSORIES** | | | | Integrated Hydronics Noise & Head Pressure Control | | | | | | | | | |-------------------|---------------------------------|----------------|--|------------------|-----------------------|----------------|------------------|--------------|---------------|----------------|------------------| | Reference | Products | Single
pump | Twin
pump | High ESP
pump | High ESP
twin pump | Buffer
tank | Reduced
Noise | Low
noise | Fan
Silent | Low
Ambient | High ESP
fans | | | | OPSP | OPTP | OPHP | OPHT | OPBT | OPRN | OPLN | OPFS | OPLA | OPHF | | FIAVAD A IVAIN | 800-900-950-C10-C11-C12-C13-C14 | • | • | | | | • | • | • | • | •(5) | | EWAP-AJYNN | C15-C16-C17-C18 | | | | | | • | • | • | • | •(5) | | EWAP-AJYNN / A | 850-900-950-C10-C11-C12-C13-C14 | • | • | | | | • | • | • | • | •(5) | | EVVAP-AJTIVIN / A | C15-C16-C17-C18 | | | | | | • | • | • | • | •(5) | | C12 | C13 | C14 | C15 | C16 | C17 | C18 | |-----------------------------|-----------|-----------|---------------------------------------|-------------|------------|-----------| | 1,158 | 1,284 | 1,354 | 1,426 | 1,516 | 1,583 | 1,650 | | 507 | 546 | 578 | 609 | 647 | 682 | 717 | | | | | Stepless 8.3-100 | | | | | 2.28 | 2.35 | | 2.34 | | 2.32 | 2.3 | | 2.90 | 2. | 98 | 2.97 | 2.98 | 2.95 | 2.93 | | 2,520x9,170x2,230 | 2,520x10, | 070x2,230 | 2,520x10, | 970x2,230 | 2,520x11,8 | 370x2,230 | | 7,990 | 8,305 | 8,435 | 8,890 | 8,905 | 9,155 | 9,265 | | 8,270 | 8,775 | 8,905 | 9,360 | 9,350 | 9,600 | 9,710 | | | | | Shell and tube | | | | | 263 | | 432 | | | 419 | | | 1,212 | 1,614 | 1,626 | 1,642 | 2,357 | 2,359 | 2,365 | | 3,320 | 3,681 | 3,882 | 4,088 | 4,346 | 4,538 | 4,730 | | 3,833 | 5,104 | 5,141 | 5,192 | 7,453 | 7,460 | 7,479 | | 75 | 52 | 57 | 62 | 34 | 37 | 40 | | | | G | ooved tubes and ALU coated louvred f | ins | | | | 5,970 | 6,300 | 6,636 | 7,440 | 7,296 | 7,632 | 7,962 | | | | | 860 | | | | | | | | Semi-hermetic single screw compressor | | | | | | | | 3 | | | | | 103 | | | 10 | 04 | | | | | | | -8 ~ 10 | | | | | | | | -18(OPLA) ~ 42 | | | | | | | | R-407C | | | | | 180 | 190 | 200 | 210 | 220 | 230 | 240 | | | | | 3 | | | | | | | | Electronic expansion valve | | | | | | | | 3~/400V/50Hz | | | | | Victaulic, diameter 219.1mm | | | | meter 273mm | | | | | | | 1/2'' gas | | | | | C12 | C13 | C14 | C15 | C16 | C17 | C18 | | | | | |-----------------------------|-----------|-----------|--|-------------|------------|----------|--|--|--|--| | 1,253 | 1,357 | 1,427 | 1,497 | 1,595 | 1,644 | 1,729 | | | | | | 476 | 512 | 542 | 575 | 611 | 654 | 678 | | | | | | | | | Stepless 8.3-100 | | | | | | | | | 2.63 | 2.65 | 2.63 | 2.6 | 2.61 | 2.51 | 2.55 | | | | | | 3.24 | 3.28 | 3.26 | 3.22 | 3.24 | 3.12 | 3.18 | | | | | | 2,520x11,870x2,230 | 2,520x12, | 770x2,230 | 2,520x13, | 670x2,230 | 2,520x14,5 | 70x2,230 | | | | | | 9,050 | 9,505 | 9,625 | 10,060 | 10,075 | 10,410 | 10,470 | | | | | | 9,320 | 9,980 | 10,100 | 10,530 | 10,520 | 10,860 | 10,920 | | | | | | | | | Shell and tube | 3. | | | | | | | | 278 | | 432 | | | 419 | | | | | | | 1,560 | 1,629 | 1,643 | 1,634 | 2,346 | 2,356 | 2,390 | | | | | | 3,592 | 3,890 | 4,091 | 4,291 | 4,572 | 4,713 | 4,957 | | | | | | 4,934 | 5,153 | 5,195 | 5,166 | 7,417 | 7,452 | 7,559 | | | | | | 53 | 57 | 62 | 69 | 38 | 40 | 43 | | | | | | | | G | rooved tubes and ALU coated louvred fi | ins | | | | | | | | 7,962 | 8,292 | 8,622 | 9,468 | 9,288 | 9,618 | 9,948 | | | | | | | | | 860 | | | | | | | | | | | | Semi-hermetic single screw compressor | | | | | | | | | | | | 3 | | | | | | | | | | 104 | | | 105 | | | | | | | | | | | -8~10 | | | | | | | | | | | | -18(OPLA) ~ 46 | | | | | | | | | | | | R-407C | | | | | | | | | 240 | 250 | 260 | 270 | 280 | 290 | 300 | | | | | | | | | 3 | | | | | | | | | | | | Electronic expansion valve | | | | | | | | | | | | 3 ~ /400V/50Hz | | | | | | | | | Victaulic, diameter 219.1mm | | | Victaulic, diar | meter 273mm | | | | | | | | | | | 1/2" gas | | | | | | | | 1/2" gas | Heat Recovery LWE | | | Electrical | | | | | Refrigerant | | | | | Misc | | | | | | |-------------------|------------------------|--------------------------|----------------|---------------|------------------------|----------------|-----------------|---------------------|--------------|-------------------------------|------|-----------------------|--------|----------------|----------------------|-----------------|-----------------|-----------------------------------| | | Total Heat
Recovery | Partial Heat
Recovery | High
Glycol | Low
Glycol | Evaporator heater tape | Main
switch | Soft
starter | Power
factor 0,9 | A/V
meter | Electronic
Expansion Valve | | Suction stop
valve | Gauges | Coil
guards | Blank Cu/Al
coils | Cu/
Sn coils | Cu/
Cu coils | Spring Anti Vibra-
tion Mounts | | | OPTR | OPPR | OPZH | OPZL | OP10 | OP52 | OPSS | OPPF | OP57 | OPEX | OP03 | OP12 | OPGA | OPCG | OPAL | OPSN | OPCU | OPSVM | | | • | • | STD | STD | STD | STD | • | • | • | STD | •(s) | •(s) | •(4) | • | • | • | • | • | | | • | • | STD | STD | STD | STD | • | • | • | STD | •(s) | •(s) | •(4) | • | • | • | • | • | | | • | • | STD | STD | STD | STD | • | • | • | STD | •(s) | •(s) | •(4) | • | • | • | • | • | | | • | • | STD | STD | STD | STD | • | • | • | STD | •(s) | •(s) | •(4) | • | • | • | • | • | ## **OPTIONS & ACCESSORIES** | Reference | Communication cards | | | | | Modbus gateway
Bacnet gateway | Remote user interface | | Buffer tanks | | | | |--|---------------------|--------------|---------|------------------|----------|----------------------------------|-----------------------|--|-----------------------|-------|----------|----------------------| | Reference | EKAC200J | | EKACLON | | EKBMSBNJ | | EKRUPCK | | EKBT500N | | EKBTC10N | | | EWAP800-C18AJYNN
EWAP850-C18AJYNN/A | : | | | • | | • | • | | : | | · · | | | | | | | | | | | | | | | | | Deference | Buffe | Buffer tanks | | Sequencing Panel | | Plant Visor | Modem | | Converter RS
RS232 | | | Converter RS485 to U | | Reference | EKBT500C | E | квтс10С | EKCSCI | I | EKPV2J | EKMODEM | | KGSMOD | EKCON | I | EKCONUSB | | EWAP800-C18AJYNN | • | | • | • | | • | • | | • | • | | • | | FWAP850-C18AIYNN/A | | | • | | | | | | • | | | | ## **ENVIRONMENTAL AWARENESS** #### Daikin and the Environment In recent years, motivated by a global awareness of the need to reduce the burdens on the environment, some manufacturers including Daikin have invested enormous efforts in limiting the negative effects associated with the production and the operation of chillers. Hence, models with energy saving features and improved eco-production techniques have seen the light of day, making a significant contribution to limiting the impact on the environment. Daikin's unique position as a manufacturer of air conditioning equipment, compressors and refrigerants has led to its close involvement in environmental issues. For several years Daikin has had the intention to become a leader in the provision of products that have limited impact on the environment. that have limited impact on the environment. This challenge demands the eco design and development of a wide range of products and an energy management system, resulting in energy conservation and a reduction of waste. Daikin Europe N.V. is approved by LRQA for its Quality Management System in accordance with the ISO9001 standard. ISO9001 pertains to quality assurance regarding design, development, manufacturing as well as to services related to the product. ISO14001 assures an effective environmental management system in order to help protect human health and the environment from the potential impact of our activities, products and services and to assist in maintaining and improving the quality of the environment. The present leaflet is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe N.V. Daikin Europe N.V. has compiled the content of this leaflet to the best of its knowledge. No express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe N.V. explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this leaflet. All content is copyrighted by Daikin Europe N.V. Daikin units comply with the European regulations that guarantee the safety of the product. Daikin Europe N.V. participates in the Eurovent Certification Programme for Air Conditioners (AC). Liquid Chilling Packages (LCP) and Fan Coil Units (FC); the certified data of certified models are listed in the Eurovent Directory. Certification is valid for air cooled models <600kW and water cooled models <1500kW. # DAIKIN EUROPE N.V. Naamloze Vennootschap Zandvoordestraat 300 B-8400 Oostende, Belgium www.daikin.eu BTW: BE 0412 120 336 RPR Oostende FSC Daikin products are distributed by: ECPEN09-418 • XXX • 02/09 • Copyright © Daikin The present publication supersedes FHEN08-418. Printed on non-chlorinated papers Prepared by La Movida, Belgium : VAN. Responsible Editor: Daikin Europe NY., Zandvoordestraat 300, B-8400 Oostende BARCODE: ECPEN09-418